CH40S Exam Review Key

Extended Answer Questions Key

I: Aqueous Solutions

1. Consider the reaction that takes place between $0.10 \mathrm{~mol} / \mathrm{L}$ aqueous solutions of iron (III) chloride, FeCl_{3}, and sodium phosphate, $\mathrm{Na}_{3} \mathrm{PO}_{4}$ at $25^{\circ} \mathrm{C}$.
Write the net ionic equation for the reaction. Include all state symbols.

$$
\mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+\mathrm{PO}_{4}^{3-}{ }_{(\mathrm{aq})}^{3-} \longrightarrow \mathrm{FePO}_{4(\mathrm{~s})}
$$

2. 10.00 mL of an unknown concentration of sulfuric acid is neutralized with 23.50 mL of a $0.765 \mathrm{~mol} / \mathrm{L}$ solution of sodium hydroxide.
a) Write a balanced chemical equation for the reaction. Include all state symbols.

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{ah})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}
$$

b) Determine the concentration of the sulfuric acid solution.
$0.765 \mathrm{~mol} / L \times 0.0235 L=0.0179775 \mathrm{~mol} \mathrm{NaOH}=0.0179775 \mathrm{~mol} \mathrm{OH}^{-}$
$0.0179775 \mathrm{~mol} \mathrm{OH}=0.0179775 \mathrm{~mol} \mathrm{H}^{+}$
$\frac{0.0179775 \mathrm{~mol} \mathrm{H}}{}{ }^{+}=0.00898875 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}$
$C=\frac{n}{V}=\frac{0.00898875 \mathrm{~mol}}{0.01 \mathrm{~L}}=0.898875 \mathrm{~mol} / \mathrm{L} \mathrm{H}_{2} \mathrm{SO}_{4}$
3. Balance the following reaction in acidic solution using half reaction methods.

$$
\underbrace{\mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{BiO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{Bi}^{3+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq})}_{\mathrm{OD}}
$$

Oxidation

$$
\left(4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mn}^{2+} \longrightarrow \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-}\right) \times 2
$$

Reduction

$$
\begin{aligned}
& \left(2 \mathrm{e}^{-}+6 \mathrm{H}^{+}+\mathrm{BiO}_{3}^{-} \longrightarrow \mathrm{Bi}^{3+}+3 \mathrm{H}_{2} \mathrm{O}\right) \times 5 \\
& 8 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Mn}^{2+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+10 \mathrm{e}^{-} \\
& 10 \mathrm{e}^{-}+30 \mathrm{H}^{+}+5 \mathrm{BiO}_{3}^{-} \longrightarrow 5 \mathrm{Bi}^{3+}+15 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Write your final balanced equation on the line below:
$\underline{14 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+}+5 \mathrm{BiO}_{3}{ }^{-} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}}$

II: Atomic Structure

1. Consider element 18, Argon.
a) State the full electron configuration for argon.

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}
$$

b) Give the formulas of two oppositely charged ions which have the same electron configuration as argon.

$$
\mathrm{S}^{2-} \text { and } \mathrm{Ca}^{2+} \quad \text { or } \quad \mathrm{Cl}^{-} \text {and } \mathrm{K}^{+}
$$

2. State and explain the differences between:
a) The atomic radius of nitrogen and oxygen.

N - larger
Because more $\mathrm{e}^{-} / \mathrm{p}^{+}$attraction in oxygen (more e^{-}and p^{+}) in the same orbital = more pull toward nucleus
b) The electronegativity of fluorine and chlorine.

F - greater electronegativity
Because fluorine has less orbitals, its outer electrons are closer to the nucleus, and thus held more strongly.

III: Kinetics

1. The reaction between solid ammonium chloride and aqueous sodium nitrite can be represented by the following equation:

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})+\mathrm{NaNO}_{2}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})
$$

State and explain how the rate of formation of nitrogen would change if the same amount of ammonium chloride were used as large lumps instead of as a fine powder.

State - slower
Explain - large lumps $=$ less surface area $=$ slower reaction
2. The graph below shows the volume of carbon dioxide gas produced against time when excess calcium carbonate is added to a fixed amount of $2.0 \mathrm{~mol} / \mathrm{L}$ hydrochloric acid.

a) State and explain the change in the rate of reaction with respect to time.

Change: reaction slows down as time passes

Explanation: As reactans are consumed, their concentration decreases and this will decrease the reaction rate
b) On the graph, show how you should find the rate of the reaction at a particular instant. Include a rate equation for full marks.
(See graph above for key)

IV: Equilibrium

1. a) A 1.00 L flask is filled with 1.000 mol of H_{2} and 2.000 mol of I_{2} at $448^{\circ} \mathrm{C}$ and allowed to reach equilibrium. Analysis of the equilibrium mixture shows that the concentration of HI is 1.87 x $10^{-3} \mathrm{~mol} / \mathrm{L}$. Calculate K_{eq} at this temperature for this reaction.

	$\mathbf{H}_{\mathbf{2}} \mathbf{(g)}$	$\mathbf{I}_{\mathbf{2}}(\mathbf{g})$	$\mathbf{2 H I}(\mathbf{g})$
\mathbf{I}	1.000	2.000	0
\mathbf{C}	-x	-x	+2 x
\mathbf{E}	$1-\mathrm{x}$	$4-\mathrm{x}$	2 x

$$
\begin{aligned}
2 x & =1.87 \times 10^{-3} \\
x & =9.35 \times 10^{-4}
\end{aligned}
$$

$\left[H_{2}\right]=1-x=1-9.35 \times 10^{-4}=0.999065 \mathrm{~mol} / \mathrm{L}$
$\left[I_{2}\right]=2-x=2-9.35 \times 10^{-4}=1.999065 \mathrm{~mol} / \mathrm{L}$
$K_{e q}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
$=\frac{\left(1.87 \times 10^{-3}\right)}{(0.999065)(1.999065)}$
$K_{e q}=1.75 \times 10^{-6}$
b) Is the forward or reverse reaction favored? Explain

Reverse reaction favored because K_{c} value is less than 1 .
2. An industrial gas mixture is produced by the catalytic reforming of methane using steam.

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H=+206 \mathrm{~kJ}
$$

Describe a change that would shift the position of equilibrium to the right and explain why the change shifts the equilibrium to the right.

Remove H_{2} or CO.
Add CH_{4} or $\mathrm{H}_{2} \mathrm{O}$.
Increase temperature.
Decrease pressure.
Explanations will vary depending on change made.
3. The solubility product of LaF_{3} is 2.0×10^{-19}. Calculate the molar solubility of LaF_{3} in grams per liter.

$$
\begin{gathered}
\mathrm{LaF}_{3(\mathrm{~s})} \rightleftharpoons \mathrm{La}^{3+}{ }_{(\mathrm{aq})}+3 \mathrm{~F}^{-}(\mathrm{aq}) \\
\mathrm{x}
\end{gathered}
$$

$$
K_{s p}=\left[L a^{3+}\right]\left[F^{-}\right]^{3}
$$

$2.0 \times 10^{-19}=(x)(3 x)^{3}$
$2.0 \times 10^{-19}=27 x^{4}$
$x^{4}=\frac{2.0 \times 10^{-19}}{27}$
$x=\sqrt[4]{\frac{2.0 \times 10^{-19}}{27}}$
$x=9.277 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
$9.277 \times 10^{-6} \mathrm{~mol} / L \times 195 \mathrm{~g} / \mathrm{mol}=0.00181 \mathrm{~g} / \mathrm{L}$

V: Acids and Bases

1. Consider nitric acid and carbonic acid for this question.
a) Identify which is the strong acid and which is the weak acid.

Strong Acid: Nitric Acid

Weak Acid: Carbonic acid
b) Using conductivity measurements state and explain what you would expect to find if you were to test equimolar solutions of the two acids in the lab.

Findings: HNO_{3} would conduct much better than $\mathrm{H}_{2} \mathrm{CO}_{3}$

Explanation: because HNO_{3} completely ionizes, it will conduct electricity much better or HNO_{3} makes more ions in water
c) Write a dissociation equation for one of the two acids. Include state symbols for full marks.

2. a) Calculate the pH of acetic $\operatorname{acid}\left(\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}\right), \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, in a $0.05 \mathrm{~mol} / \mathrm{L}$ solution.

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})
$$

	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
\mathbf{I}	0.05	-	0	0
\mathbf{C}	-x	-	+x	+x
\mathbf{E}	$0.05-\mathrm{x}$	-	x	x

Since Ka is small, x will be small. Thus,
$0.05-x \approx 0.05$

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \\
& 1.8 \times 10^{-5}=\frac{(x)(x)}{(0.05)} \\
& 1.8 \times 10^{-5}=\frac{x^{2}}{(0.05)} \\
& x^{2}=(0.05)\left(1.8 \times 10^{-5}\right) \\
& x=9.487 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] }=x=9.487 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
& p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \quad=-\log \left(9.487 \times 10^{-4}\right) \\
& p H=3.02
\end{aligned}
$$

b) Find the percent (\%) dissociation.
\% ionization $=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]} \times 100 \%=\frac{\left(9.487 \times 10^{-4}\right)}{(0.05)} \times 100 \%=1.897 \%$

VI: Electrochemistry

1. The standard electrode potentials for three electrode systems are given below.

$$
\begin{gathered}
\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{~s}) \\
\mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cr}^{2+}(\mathrm{aq}) \\
\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}(\mathrm{aq})
\end{gathered}
$$

$$
\begin{gathered}
E^{\Theta}=-3.00 \mathrm{~V} \\
E^{\Theta}=-0.41 \mathrm{~V} \\
E^{\Theta}=+0.34 \mathrm{~V}
\end{gathered}
$$

a) Using the data above, deduce which species is the best oxidizing agent, and explain your reasoning.
Cu^{2+}

Strongest ability to attract electrons/ most positive value.
b) Write an equation, including state symbols, for the overall reaction with the greatest cell potential and calculate the cell potential.

$$
\mathrm{Li}_{(\mathrm{s})} \longrightarrow \mathrm{Li}^{+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-}+3.00 \mathrm{v}
$$

$$
\mathrm{Cu}_{(\mathrm{aq})}^{2}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}{ }_{(\mathrm{m})}+0.34 \mathrm{v}
$$

$$
\mathrm{Li}_{(\mathrm{s})}+\mathrm{Cu}^{2+}{ }_{(\text {aq })} \longrightarrow \mathrm{Li}_{(\text {(aq })}^{+}+\mathrm{Cu}^{+} \text {(aq) }
$$

$$
\varepsilon^{\mathrm{o}}=0.34+3.00=3.34
$$

2. This question concerns the electrolysis of molten copper (II) chloride.
a) Sketch a diagram of the electrolytic cell and label the anode and cathode. Be sure to include all other items (electron flow/movement of ions and cations) necessary to make the cell function properly.

b) Write a balanced half equation for the reactions that occur at the anode and cathode. Be sure to include state symbols for full marks.

ANODE:

$$
2 \mathrm{Cl}_{(\mathrm{aq})}^{-} \rightarrow 2 \mathrm{e}^{-}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

CATHODE:

$$
\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{~s})
$$

c) Explain what would be observed on the surface of the cathode.

Solid copper would start to build up.

Multiple Choice Question Key			
Question	Answer	Question	Answer
1	A	26	A
2	C	27	B
3	D	28	C
4	C	29	B
5	B	30	C
6	A	31	A
7	C	32	D
8	B	33	C
9	D	34	C
10	A	35	B
11	B	36	B
12	D	37	A
13	B	38	D
14	C	39	C
15	A	40	C
16	A	41	A
17	B	42	C
18	A	43	D
19	C	44	B
20	C	45	A
21	D	46	D
22	C	47	B
23	D	48	C
24	A	49	D
25	B	50	B

